

SOLUTION

B.TECH (7
TH

 SEM) EXAM 2013

(INFORMATION TECHNOLOGY ENGG. BRANCH)

SUBJECT : INTRODUCTION TO .NET TECHNOLOGY

(AS-4232)

Q(1.) Objective type questions Answer :

i) Ans : A

ii) Ans: A

iii) Ans: A

iv) Ans: A

v) Ans: B

vi) Ans: FALSE

vii) Ans: TRUE

viii) Ans: FALSE

ix) Ans: FALSE

x) Ans: FALSE

Q(2) Short answer type :

i) Ans : The Framework Class Library (FCL) is a standard library and one of two core

components of Microsoft .NET Framework. The FCL is a collection of reusable

classes, interfaces and value types. The Base Class Library is a part of FCL and

provides the most fundamental functionality, which includes classes in namespaces

System, System.CodeDom, System.Collections, System.Diagnostics,

System.Globalization, System.IO, System.Resources and System.Text

ii) Ans: IIS Express is a lightweight, self-contained version of IIS optimized for developers.

IIS Express makes it easy to use the most current version of IIS to develop and test

websites. It has all the core capabilities of IIS 7 and above as well as additional

features designed to ease website development including:

• It doesn't run as a service or require administrator user rights to perform most tasks.

• IIS Express works well with ASP.NET and PHP applications.

• Multiple users of IIS Express can work independently on the same computer.

iii) Ans : C# is an elegant and type-safe object-oriented language that enables developers to

build a variety of secure and robust applications that run on the .NET Framework.

You can use C# to create Windows client applications, XML Web services,

distributed components, client-server applications, database applications, and much,

much more. Visual C# provides an advanced code editor, convenient user interface

designers, integrated debugger, and many other tools to make it easier to develop

applications based on the C# language and the .NET Framework.

iv) Ans : The .NET framework provides a rich set of classes, and techniques, to simplify

application configuration. Essentially, all of these classes make it easy to read and write that

configuration information from an XML configuration file.

The configuration file includes a number of standard sections, some custom sections for common

.NET features, and also allows the developer to create their own custom configuration sections.

The standard sections have evolved over time. Initially, standard configuration was done mostly

through theappSettings section, which contains name / value pairs for each setting. Over time,

transparent, type-safe support was provided via a generated C# Settings class and the

corresponding applicationSettings and userSettingsconfiguration sections. The machine

configuration file lives with the, not so easily found, .NET framework files. The location of the

configuration file is dependent on the version of .NET and type of platform (e.g. 64 bit) used by

your application.

A typical example, might be:

C:\Windows\Microsoft.NET\Framework\v4.0.30319\CONFIG\machine.confi

(V) Ans : UDDI is an XML-based standard for describing, publishing, and

finding Web services.

• UDDI stands for Universal Description, Discovery and Integration.

• UDDI is a specification for a distributed registry of Web services.

• UDDI is platform independent, open framework.

• UDDI can communicate via SOAP, CORBA, Java RMI Protocol.

• UDDI uses WSDL to describe interfaces to web services.

• UDDI is seen with SOAP and WSDL as one of the three foundation standards of web

services.

• UDDI is an open industry initiative enabling businesses to discover each other and define

how they interact over the Internet.

UDDI has two parts:

• A registry of all a web service's metadata including a pointer to the WSDL description of

a service

• A set of WSDL port type definitions for manipulating and searching that registry

Section – B

Unit – I

Q(3) Ans :

Q(4.) Ans :

.NET Framework (pronounced dot net) is a software framework developed by Microsoft that

runs primarily on Microsoft Windows. It includes a largelibrary and provides language

interoperability (each language can use code written in other languages) across

several programming languages. Programs written for .NET Framework execute in

a software environment (as contrasted to hardware environment), known as the Common

Language Runtime (CLR), an application virtual machine that provides services such as

security, memory management, and exception handling. The class library and the CLR together

constitute .NET Framework.

.NET Framework's Base Class Library provides user interface, data access, database

connectivity, cryptography, web application development, numeric algorithms, and network

communications. Programmers produce software by combining their own source code with .NET

Framework and other libraries. .NET Framework is intended to be used by most new

applications created for the Windows platform. Microsoft also produces anintegrated

development environment largely for .NET software called Visual Studio.

The .NET Framework is a technology that supports building and running the next generation of

applications and XML Web services. The .NET Framework is designed to fulfill the following

objectives:

• To provide a consistent object-oriented programming environment whether object code is

stored and executed locally, executed locally but Internet-distributed, or executed

remotely.

• To provide a code-execution environment that minimizes software deployment and

versioning conflicts.

• To provide a code-execution environment that promotes safe execution of code, including

code created by an unknown or semi-trusted third party.

• To provide a code-execution environment that eliminates the performance problems of

scripted or interpreted environments.

• To make the developer experience consistent across widely varying types of applications,

such as Windows-based applications and Web-based applications.

• To build all communication on industry standards to ensure that code based on the .NET

Framework can integrate with any other code.

2. .Net Framework 2.0 Features

• ADO.NET 2.0

• SQL Server data provider (SqlClient)

• XML

• .NET Remoting

• ASP.NET 2.0

3. .Net Framework 3.0/3.5 Features

• Windows Presentation Foundation (WPF)

• Windows Communication Foundation (WCF)

• Windows Workflow Foundation (WWF)

• Windows Card Space (WCS)

• Core New Features and Improvements:

o Auto Implemented

o Implicit Typed local variable

o Implicitly Typed Arrays

o Anonymous Types

o Extension Methods (3.5 new feature)

o Object and Collection Initializers

o Lambda Expressions

4. .Net Framework 4.0 Features

• Application Compatibility and Deployment

• Core New Features and Improvements

o BigInteger and Complex Numbers

o Tuples

o Covariance and Contravariance

o Dynamic Language Runtime

• Managed Extensibility Framework

• Parallel Computing

• Networking

• Web

• Client

• Data

• Windows Communication Foundation

• Windows Workflow Foundation

5. .Net Framework 4.5 Features

• .NET for Windows Store Apps

• Portable Class Libraries

• Core New Features and Improvements

• Tools

• Parallel Computing

• Web

Windows Presentation Foundation (WPF)

• Windows Communication Foundation (WCF)

• Windows Workflow Foundation (WF)

Unit – II

Q(5.) Ans :

In general terms, a collection is an object used for grouping and managing related objects. For

example, every Form has a collection of controls. (You can access this collection through the

form's Controls property.) This collection is an object that represents all the controls on that

form. It allows you to retrieve a control in the collection by its index, and to loop through the

elements of the collection using a For Each...Next Statement (Visual Basic).

However, there are several kinds of collections, and they differ from each other in several ways.

Collection classes are specialized classes for data storage and retrieval. These classes provide

support for stacks, queues, lists, and hash tables. Most collection classes implement the same

interfaces.

Collection classes serve various purposes, such as allocating memory dynamically to elements

and accessing a list of items on the basis of an index, etc. These classes create collections of

objects of the Object class, which is the base class for all data types in VB.Net.

Various Collection Classes and Their Usage

The following are the various commonly used classes of the System.Collection namespace.

Click the following links to check their details.

Class Description and Useage

ArrayList

It represents ordered collection of an object that can

be indexed individually.

It is basically an alternative to an array. However, unlike array, you

can add and remove items from a list at a specified position using

an index and the array resizes itself automatically. It also allows

dynamic memory allocation, add, search and sort items in the list.

Hashtable

It uses a key to access the elements in the collection.

A hash table is used when you need to access elements by using key,

and you can identify a useful key value. Each item in the hash table

has a key/value pair. The key is used to access the items in the

collection.

SortedList

It uses a key as well as an index to access the items in a list.

A sorted list is a combination of an array and a hash table. It contains

a list of items that can be accessed using a key or an index. If you

access items using an index, it is an ArrayList, and if you access

items using a key, it is a Hashtable. The collection of items is always

sorted by the key value.

Stack

It represents a last-in, first out collection of object.

It is used when you need a last-in, first-out access of items. When you

add an item in the list, it is called pushing the item, and when you

remove it, it is calledpopping the item.

Queue

It represents a first-in, first out collection of object.

It is used when you need a first-in, first-out access of items. When

you add an item in the list, it is called enqueue, and when you

remove an item, it is calleddeque.

BitArray

It represents an array of the binary representation using the values 1

and 0.

It is used when you need to store the bits but do not know the number

of bits in advance. You can access items from the BitArray collection

by using an integer index, which starts from zero.

A collection is an object. It contains references to other objects. In this way VB.NET combines

many class instances and values together. With collections we construct object models that

mirror real-world problems.

Q(6.) Ans :

An event is a signal that informs an application that something important has occurred. For

example, when a user clicks a control on a form, the form can raise aClick event and call a

procedure that handles the event. Events also allow separate tasks to communicate. Say, for

example, that your application performs a sort task separately from the main application. If a

user cancels the sort, your application can send a cancel event instructing the sort process to stop.

1.) Click

2.) Key

3.) Mouse

4.) Custom

5.) Form

Events are basically a user action like key press, clicks, mouse movements, etc., or some

occurrence like system generated notifications. Applications need to respond to events when they

occur.

Clicking on a button, or entering some text in a text box, or clicking on a menu item, all are

examples of events. An event is an action that calls a function or may cause another event.

Event handlers are functions that tell how to respond to an event.

VB.Net is an event-driven language. There are mainly two types of events:

• Mouse events

• Keyboard events

Handling Mouse Events

Mouse events occur with mouse movements in forms and controls. Following are the various

mouse events related with a Control class:

• MouseDown - it occurs when a mouse button is pressed

• MouseEnter - it occurs when the mouse pointer enters the control

• MouseHover - it occurs when the mouse pointer hovers over the control

• MouseLeave - it occurs when the mouse pointer leaves the control

• MouseMove - it occurs when the mouse pointer moves over the control

• MouseUp - it occurs when the mouse pointer is over the control and the mouse button is

released

• MouseWheel - it occurs when the mouse wheel moves and the control has focus

The event handlers of the mouse events get an argument of type MouseEventArgs. The

MouseEventArgs object is used for handling mouse events. It has the following properties:

• Buttons - indicates the mouse button pressed

• Clicks - indicates the number of clicks

• Delta - indicates the number of detents the mouse wheel rotated

• X - indicates the x-coordinate of mouse click

• Y - indicates the y-coordinate of mouse click

Handling Keyboard Events

Following are the various keyboard events related with a Control class:

• KeyDown - occurs when a key is pressed down and the control has focus

• KeyPress - occurs when a key is pressed and the control has focus

• KeyUp - occurs when a key is released while the control has focus

The event handlers of the KeyDown and KeyUp events get an argument of type KeyEventArgs.

This object has the following properties:

• Alt - it indicates whether the ALT key is pressed/p>

• Control - it indicates whether the CTRL key is pressed

• Handled - it indicates whether the event is handled

• KeyCode - stores the keyboard code for the event

• KeyData - stores the keyboard data for the event

• KeyValue - stores the keyboard value for the event

• Modifiers - it indicates which modifier keys (Ctrl, Shift, and/or Alt) are pressed

• Shift - it indicates if the Shift key is pressed

The event handlers of the KeyDown and KeyUp events get an argument of type KeyEventArgs.

This object has the following properties:

• Handled - indicates if the KeyPress event is handled

• KeyChar - stores the character corresponding to the key pressed

Unit- III

Q(7.) Ans :

DO.NET provides consistent access to data sources such as SQL Server and XML, and to data

sources exposed through OLE DB and ODBC. Data-sharing consumer applications can use

ADO.NET to connect to these data sources and retrieve, handle, and update the data that they

contain.

ADO.NET separates data access from data manipulation into discrete components that can be

used separately or in tandem. ADO.NET includes .NET Framework data providers for

connecting to a database, executing commands, and retrieving results. Those results are either

processed directly, placed in an ADO.NET DataSet object in order to be exposed to the user in

an ad hoc manner, combined with data from multiple sources, or passed between tiers.

The DataSet object can also be used independently of a .NET Framework data provider to

manage data local to the application or sourced from XML.

The ADO.NET classes are found in System.Data.dll, and are integrated with the XML classes

found in System.Xml.dll. For sample code that connects to a database, retrieves data from it, and

then displays that data in a console window, see ADO.NET Code Examples.

ADO.NET provides functionality to developers who write managed code similar to the

functionality provided to native component object model (COM) developers by ActiveX Data

Objects (ADO). We recommend that you use ADO.NET, not ADO, for accessing data in your

.NET applications.

Connection & Command Objects

The Connection Object is a part of ADO.NET Data Provider and it is a unique session with the

Data Source. In .Net Framework the Connection Object is Handling the part of physical

communication between the application and the Data Source. Depends on the parameter

specified in the Connection String , ADO.NET Connection Object connect to the specified

Database and open a connection between the application and the Database . When the connection

is established , SQL Commands may be executed, with the help of the Connection Object, to

retrieve or manipulate data in the Database. Once the Database activity is over , Connection

should be closed and release the resources . In ADO.NET the type of the Connection is depend

on what Database system you are working with. The following are the commonly using the

connections in the ADO.NET

SqlConnection

OleDbConnection

OdbcConnection

Command : Command is used to execute almost any SQL command from within the

.net applicat ion. The SQL command like insert, update, delete, select, create, alter,

drop can be executed with command object and you can also call stored procedures

with the command object. Command object has the following important properties.

• Connect ion : used to specify the connection to be used by the command

object.

• CommandType : Used to specify the type of SQL command you want to

execute. To assign a value to this property, use the enumerat ion

CommandType that has the members Text, StoredProcedure and TableDirect.

Text is the default and is set when you want to execute ant SQL command

with command object. StoredProcedure is set when you want to call a stored

procedure or funct ion andTableDirect is set when you want to retrieve data

from the table direct ly by specifying the table name without writ ing a select

statement.

• CommandText : Used to specify the SQL statement you want to execute.

• Transact ion : Used to associate a transact ion object to the command object so

that the changes made to the database with command object can be committed

or rollback.

ExecuteNonQuery() : Used to execute an SQL statement that doesn’t return any

value like insert, update and delete. Return type of this method is int and it returns

the no. of rows effected by the given statement.

• ExecuteScalar() : Used to execute an SQL statement and return a single

value. When the select statement executed by executescalar() method returns

a row and mult iple rows, then the method will return the value of first

column of first row returned by the query. Return type of this method is

object.

• ExecuteReader() : Used to execute a select a statement and return the rows

returned by the select statement as a DataReader. Return type of this method

is DataReader.

Example :

isting 1. Using a SqlConnection

using System;

using System.Data;

using System.Data.SqlClient;

/// <summary>

/// Demonstrates how to work with SqlConnection objects

/// </summary>

class SqlConnectionDemo

{

 static void Main()

 {

 // 1. Instantiate the connection

 SqlConnection conn = new SqlConnection(

 "Data Source=(local);Initial Catalog=Northwind;Integrated Security=SSPI");

 SqlDataReader rdr = null;

 try

 {

 // 2. Open the connection

 conn.Open();

 // 3. Pass the connection to a command object

 SqlCommand cmd = new SqlCommand("select * from Customers", conn);

 //

 // 4. Use the connection

 //

 // get query results

 rdr = cmd.ExecuteReader();

 // print the CustomerID of each record

 while (rdr.Read())

 {

 Console.WriteLine(rdr[0]);

 }

 }

 finally

 {

 // close the reader

 if (rdr != null)

 {

 rdr.Close();

 }

 // 5. Close the connection

 if (conn != null)

 {

 conn.Close();

 }

 }

 }

}

Q(8.) Ans :

Imports System

Imports System.Data

Imports System.Data.SqlClient

Module Module1

 Sub Main()

 Dim sConnectionString As String

 sConnectionString = "Password=<strong password>;User ID=<username>;" & _

 "Initial Catalog=pubs;" & _

 "Data Source=(local)"

 Dim objConn As New SqlConnection(sConnectionString)

 objConn.Open()

 Dim daAuthors As _

 New SqlDataAdapter("Select * From Authors", objConn)

 Dim dsPubs As New DataSet("Pubs")

 daAuthors.FillSchema(dsPubs, SchemaType.Source, "Authors")

 daAuthors.Fill(dsPubs, "Authors")

 Dim tblAuthors As DataTable

 tblAuthors = dsPubs.Tables("Authors")

 Dim drCurrent As DataRow

 For Each drCurrent In tblAuthors.Rows

 Console.WriteLine("{0} {1}", _

 drCurrent("au_fname").ToString, _

 drCurrent("au_lname").ToString)

 Next

 Console.ReadLine()

 End Sub

End Module

Unit – IV

Q(9.)

Ans :

HTML Controls

HTML elements in ASP.NET files are, by default, treated as text. To make these elements

programmable, add a runat="server" attribute to the HTML element. This attribute indicates that

the element should be treated as a server control.

Note: All HTML server controls must be within a <form> tag with the runat="server" attribute!

Note: ASP.NET requires that all HTML elements must be properly closed and properly nested.

HTML Server Control Description

HtmlAnchor Controls an <a> HTML element

HtmlButton Controls a <button> HTML element

HtmlForm Controls a <form> HTML element

HtmlGeneric Controls other HTML element not specified by a specific HTML server control, like

<body>, <div>, , etc.

HtmlImage Controls an <image> HTML element

HtmlInputButton Controls <input type="button">, <input type="submit">, and <input type="reset">

HTML elements

HtmlInputCheckBox Controls an <input type="checkbox"> HTML element

HtmlInputFile Controls an <input type="file"> HTML element

HtmlInputHidden Controls an <input type="hidden"> HTML element

HtmlInputImage Controls an <input type="image"> HTML element

HtmlInputRadioButton Controls an <input type="radio"> HTML element

HtmlInputText Controls <input type="text"> and <input type="password"> HTML elements

HtmlSelect Controls a <select> HTML element

HtmlTable Controls a <table> HTML element

HtmlTableCell Controls <td>and <th> HTML elements

HtmlTableRow Controls a <tr> HTML element

HtmlTextArea Controls a <textarea> HTML element

Q(10 .) Ans:

C #

using System;

using System.Collections;

using System.Configuration;

using System.Data;

using System.Linq;

using System.Web;

using System.Web.Security;

using System.Web.UI;

using System.Web.UI.HtmlControls;

using System.Web.UI.WebControls;

using System.Web.UI.WebControls.WebParts;

using System.Xml.Linq;

using System.Data.SqlClient;

public partial class sigin_in : System.Web.UI.Page

{

 protected void Page_Load(object sender, EventArgs e)

 {

 }

 SqlConnection con = new SqlConnection("Data Source=KRISHN-PC;Initial

Catalog=sign;Persist Security Info=True;User ID=sa;Password=***********");

 protected void Button1_Click(object sender, EventArgs e)

 {

 SqlDataAdapter obj = new SqlDataAdapter("select from login where userid =

'"+TextBox1.Text+"'and password = '"+TextBox2.Text +"'",con);

 DataSet a = new DataSet();

 obj.Fill(a);

 //obj.Update(a);

 if (a.Tables[0].Rows.Count > 0)

 {

 Response.Redirect("home.aspx");

 }

 else

 {

 Label.Text = " wrong pswd";

 }

 }

}

Vb.NET

Imports System.Data

Imports System.Data.SqlClient

Imports System.Configuration

Partial Class _Default

Inherits System.Web.UI.Page

Protected Sub Page_Load(ByVal sender As Object, ByVal e As EventArgs)

End Sub

Protected Sub btnSubmit_Click(ByVal sender As Object, ByVal e As EventArgs)

Dim con As NewSqlConnection(ConfigurationManager.ConnectionStrings("dbconnection").Con

nectionString)

con.Open()

Dim cmd As New SqlCommand("select * from UserInformation where UserName =@username

and Password=@password", con)

cmd.Parameters.AddWithValue("@username", txtUserName.Text)

cmd.Parameters.AddWithValue("@password", txtPWD.Text)

Dim da As New SqlDataAdapter(cmd)

Dim dt As New DataTable()

da.Fill(dt)

If dt.Rows.Count > 0 Then

Response.Redirect("Details.aspx")

Else

ClientScript.RegisterStartupScript(Page.[GetType](), "validation", "<script

language='javascript'>alert('Invalid Username and Password')</script>")

End If

End Sub

End Class

Unit- V

Q(11.) Ans :

AJAX

AJAX = Asynchronous JavaScript and XML.

AJAX is not a new programming language, but a new way to use existing standards.

AJAX is the art of exchanging data with a server, and updating parts of a web page - without

reloading the whole page.

AJAX is Based on Internet Standards

AJAX is based on internet standards, and uses a combination of:

• XMLHttpRequest object (to exchange data asynchronously with a server)

• JavaScript/DOM (to display/interact with the information)

• CSS (to style the data)

• XML (often used as the format for transferring data)

• AJAX Example Explained

• The AJAX application above contains one div section and one button.

• The div section will be used to display information returned from a server. The button

calls a function named loadXMLDoc(), if it is clicked:

• <!DOCTYPE html>

<html>

<body>

<div id="myDiv"><h2>Let AJAX change this text</h2></div>

<button type="button" onclick="loadXMLDoc()">Change Content</button>

</body>

</html>

• Next, add a <script> tag to the page's head section. The script section contains the

loadXMLDoc() function:

• <head>

<script>

function loadXMLDoc()

{

.... AJAX script goes here ...

}

</script>

</head>

XML Serialization

Serialization is the process of converting an object into a form that can be readily transported.

For example, you can serialize an object and transport it over the Internet using HTTP between a

client and a server. On the other end, deserialization reconstructs the object from the stream.

XML serialization serializes only the public fields and property values of an object into an XML

stream. XML serialization does not include type information. For example, if you have

a Book object that exists in the Library namespace, there is no guarantee that it is deserialized

into an object of the same type.

The central class in XML serialization is the XmlSerializer class, and the most important

methods in this class are the Serialize and Deserialize methods. The XmlSerializercreates C#

files and compiles them into .dll files to perform this serialization. In .NET Framework 2.0,

the XML Serializer Generator Tool (Sgen.exe) is designed to generate these serialization

assemblies in advance to be deployed with your application and improve startup performance.

The XML stream generated by the XmlSerializer is compliant with the World Wide Web

Consortium (www.w3.org) XML Schema definition language (XSD) 1.0 recommendation.

Furthermore, the data types generated are compliant with the document titled "XML Schema

Part 2: Datatypes."

The data in your objects is described using programming language constructs like classes, fields,

properties, primitive types, arrays, and even embedded XML in the form

ofXmlElement or XmlAttribute objects. You have the option of creating your own classes,

annotated with attributes, or using the XML Schema Definition tool to generate the classes based

on an existing XML Schema.

If you have an XML Schema, you can run the XML Schema Definition tool to produce a set of

classes that are strongly typed to the schema and annotated with attributes. When an instance of

such a class is serialized, the generated XML adheres to the XML Schema. Provided with such a

class, you can program against an easily manipulated object model while being assured that the

generated XML conforms to the XML schema. This is an alternative to using other classes in the

.NET Framework, such as the XmlReaderand XmlWriter classes, to parse and write an XML

stream. For more information, see XML Documents and Data. These classes allow you to parse

any XML stream. In contrast, use the XmlSerializer when the XML stream is expected to

conform to a known XML Schema.

Attributes control the XML stream generated by the XmlSerializer class, allowing you to set the

XML namespace, element name, attribute name, and so on, of the XML stream. For more

information about these attributes and how they control XML serialization, see Controlling XML

Serialization Using Attributes. For a table of those attributes that are used to control the

generated XML, see Attributes That Control XML Serialization.

The XmlSerializer class can further serialize an object and generate an encoded SOAP XML

stream. The generated XML adheres to section 5 of the World Wide Web Consortium document

titled "Simple Object Access Protocol (SOAP) 1.1." For more information about this process,

see How to: Serialize an Object as a SOAP-Encoded XML Stream. For a table of the attributes

that control the generated XML, see Attributes That Control Encoded SOAP Serialization.

The XmlSerializer class generates the SOAP messages created by, and passed to, XML Web

services. To control the SOAP messages, you can apply attributes to the classes, return values,

parameters, and fields found in an XML Web service file (.asmx). You can use both the

attributes listed in "Attributes That Control XML Serialization" and "Attributes That Control

Encoded SOAP Serialization" because an XML Web service can use either the literal or encoded

SOAP style. For more information about using attributes to control the XML generated by an

XML Web service, see XML Serialization with XML Web Services. For more information about

SOAP and XML Web services, seeCustomizing SOAP Messages.

Security Considerations for XmlSerializer Applications

When creating an application that uses the XmlSerializer, you should be aware of the following

items and their implications:

• The XmlSerializer creates C# (.cs) files and compiles them into .dll files in the directory

named by the TEMP environment variable; serialization occurs with those DLLs.

Note:

These serialization assemblies can be generated in advance and signed by using the SGen.exe tool. This does not work a server of Web services. In

other words, it is only for client use and for manual serialization.

• The code and the DLLs are vulnerable to a malicious process at the time of creation and

compilation. When using a computer running Microsoft Windows NT 4.0 or later, it

might be possible for two or more users to share the TEMP directory. Sharing a TEMP

directory is dangerous if the two accounts have different security privileges and the

higher-privilege account runs an application using the XmlSerializer. In this case, one

user can breach the computer's security by replacing either the .cs or .dll file that is

compiled. To eliminate this concern, always be sure that each account on the computer

has its own profile. By default, the TEMP environment variable points to a different

directory for each account.

• If a malicious user sends a continuous stream of XML data to a Web server (a denial of

service attack), then the XmlSerializer continues to process the data until the computer

runs low on resources.

This kind of attack is eliminated if you are using a computer running Internet Information

Services (IIS), and your application is running within IIS. IIS features a gate that does not

process streams longer than a set amount (the default is 4 KB). If you create an

application that does not use IIS and deserializes with the XmlSerializer, you should

implement a similar gate that prevents a denial of service attack.

• The XmlSerializer serializes data and runs any code using any type given to it.

There are two ways in which a malicious object presents a threat. It could run malicious

code or it could inject malicious code into the C# file created by theXmlSerializer. In the

first case, if a malicious object tries to run a destructive procedure, code access security

helps prevent any damage from being done. In the second case, there is a theoretical

possibility that a malicious object may somehow inject code into the C# file created by

the XmlSerializer. Although this issue has been examined thoroughly, and such an attack

is considered unlikely, you should take the precaution of never serializing data with an

unknown and untrusted type.

• Serialized sensitive data might be vulnerable.

After the XmlSerializerhas serialized data, it can be stored as an XML file or other data

store. If your data store is available to other processes, or is visible on an intranet or the

Internet, the data can be stolen and used maliciously. For example, if you create an

application that serializes orders that include credit card numbers, the data is highly

sensitive. To help prevent this, always protect the store for your data and take steps to

keep it private.

Q(12.) Ans :

OLAP : In computing, online analytical processing, or OLAP /ˈoʊlæp/, is an approach to

answering multi-dimensional analytical (MDA) queries swiftly.
[1]

 OLAP is part of the broader

category ofbusiness intelligence, which also encompasses relational database, report writing

and data mining.
[2]

 Typical applications of OLAP include business reporting for sales, marketing,

management reporting, business process

management (BPM),
[3]

 budgeting and forecasting, financial reporting and similar areas, with new

applications coming up, such as agriculture.
[4]

 The term OLAP was created as a slight

modification of the traditional database term OLTP (Online Transaction Processing).
[5]

Example :

Imports CrystalDecisions.CrystalReports.Engine

Public Class Form1

 Private Sub Button1_Click(ByVal sender As System.Object,

 ByVal e As System.EventArgs) Handles Button1.Click

 Dim cryRpt As New ReportDocument

 cryRpt.Load("PUT CRYSTAL REPORT PATH HERE\CrystalReport1.rpt")

 CrystalReportViewer1.ReportSource = cryRpt

 CrystalReportViewer1.Refresh()

 End Sub

End Class

cryRpt.Load("PUT CRYSTAL REPORT PATH HERE\CrystalReport1.rpt")

